TDA Data Management Planning: Readability of Flow Charts

E. C. Posner
TDA Planning Office

This article proposes a “global” readability standard for flow charts in DSN
software implementations. The standard limits the kinds of closures and returns
that can occur from decision nodes. It is proved that the standard is equivalent to
permitting only those flow charts that are constructible from hierarchical expan-
sion of the three structures BLOCK, IFTHENELSE, and LOOPREPEAT. The
LOOPREPEAT structure is the simultaneous generalization of DOWHILE and
DOUNTIL. Considerations of code as opposed to flow chart readability, however,
may rule out the use of LOOPREPEAT in favor of allowing only its special cases

DOWHILE and DOUNTIL.

l. Introduction

We propose a standard for flow charts to be used in
DSN implementations. We first define a flow chart as
a finite directed graph with five kinds of nodes:

(1) START nodes with no links entering the node and
one link leaving.

(2) END nodes with one link entering and none
leaving,.

(3) FUNCTION nodes with one link entering and one
leaving.

(4) DECISION nodes with one link entering and two
leaving.

(5) COLLECTOR nodes with two links entering and
one leaving.

196

We further require that there be exactly one START
node and one END node. We also demand that the flow
chart be connected in the sense that, given any node,
there is a directed path from START to END going
through the node. The condition on DECISION nodes
that they have only two outputs is a mathematical con-
venience for proof purposes, and the use of multiple out-
put decisions (cases) would be allowed in any DSN
standard. A similar comment applies to COLLECTOR
nodes.

More precisely, a (finite) directed graph is a collection
of points called nodes, and directed edges, called links.
Nodes are connected to nodes by links, where the direc-
tion is indicated by an arrowhead at the forward end of
the link, the other end being called the rear. Each link
must start and end at a (possibly the same) node. It starts

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-26

at its rear end and ends at its forward end. A path from
one node n, to another n, is a sequence of nodes n, = m,,
m,, ——, m, =n, and links £,, ,, ——, £,.,, such that
link £; starts at m; and ends at m;,;,, 1 <j<p— 1L

A flow chart then is a directed graph, where the graph
nodes are the function boxes, decision boxes, and collec-
tor nodes. We will, however, draw all nodes as dots, since
the definition of “flow chart graph” makes it clear whether
a given graph node corresponds to a function, decision,
or collection.

Given flow charts G, and G, together with a function
node F of G,, we define the hierarchical expansion of G,
by replacing F by G,, H(G,, F; G,) as a new flow chart
G.. Specifically, let link 2, end at F and {1, start at F.
Remove node F from the set of nodes of GG, and add the
set of nodes of G, other than START and END. Let £,
end at the first node of G, reached from its START, and
let £, start at the last node before the END of G,. Then
the START and END of G, have been removed, but all
other nodes remain and are the same kind of node. The
fact that G, is a flow chart can be readily verified.

Let G be a flow chart and F a function node of G.
We can get a new flow thart G’ with one less node and
one less link as follows: Remove F from the set of nodes
of G. Let £, end at F, and L. start there. Remove these
two links from the set of links and add a new link ¥
which starts at the node from which £, started, and ends
where £, ended (see Fig. 1). This operation permits us to
remove a “no-op” function at a FUNCTION node.

Let A be a finite set of flow charts, called structures.
Define A, = A, and A,, the one-step completion of A, as
the class of all flow charts which can be obtained from
the structures in A by removing a function node, or by
replacing a function node of a structure G by a structure
H in A, where H may be different from G. Define A,
for n > 1, the n-step completion of A, to be the one-step
completion of A,.,. Define A, the completion of A, to be

U A,
n=1
the flow charts obtainable from the structures in A by
hierarchical expansion. Note that if G and H are in A,
and F is a function node of G, then replacing F in G by
H leads to a flow chart still in A; that is, A,, is complete
under hierarchical expansion.

Finally, let us define a looping decision and a non-
looping decision. A nonlooping decision node in a flow

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-26

chart is one for which all paths to END starting at the
decision ultimately coincide at some collector node before
any path from the decision again reaches that decision
node. Otherwise the decision node is called a looping
decision. A link starting at a decision node with the
property that all paths to END starting with the link
avoid the given decision node is a non-looping link; if
there is a way to reach the decision node starting with the
link, it is called a looping link.

Let us now define a set R of structures which consists
of the three structures BLOCK, IFTHENELSE, and
LOOPREPEAT, as in Fig. 2. Note that LOOPREPEAT
becomes DOWHILE if node G is removed and DOUNTIL
if F is removed. Hence, by Mills’ Theorem (Ref. 1), every
algorithm can be flow charted by a flow chart in R,
since it can be flow charted by a flow chart in the
completion of BLOCK, IFTHENELSE, and DOWHILE
(or alternatively of BLOCK IFTHENELSE, and
DOUNTIL).

Il. Readability of Flow Charts

A nonlooping decision node is said to have the Unique
Merger Property if the node at which all paths out of the
decision first merge has the property that any two paths
starting with different links out of the decision node also
merge for the first time at that node. The decision node
in IFTHENELSE satisfies Unique Merger.

A looping decision node is said to have the Forced
Loop Closure Property provided the following holds. An
external input to a loop is a collector node reachable from
the decision that has an output path to the decision node.
It also has an input path from START not containing the
same output link of the given decision node that was on
the input path to the collector node. Note that each loop-
ing decision node has at least one external input to a loop
it creates. We require that the following hold for at least
(it turns out exactly) one of the output links of the looping
decision; such links are called looping links: every path
starting at a looping link must return to the looping deci-
sion. We require that there be only one external input
node. We also demand that every path starting with the
looping link go through the external input, and go through
it on only one of its two input links, before returning to
the looping decision. It follows from connectivity that
only one of the two outputs of a looping decision can be
looping—otherwise there is no way to reach END starting
from the decision. Note that the decision node of LOOP-
REPEAT has the Forced Loop Closure Property.

197

We say that a flow chart has the Readability Property
provided every nonlooping decision satisfies Unique
Merger, and every looping decision satisfies Forced Loop
Closure. Observe that if G, and G, satisfy the Read-
ability Property, or, more briefly, are Readable, then if F
is any function node in G,, the flow chart H (G,, F; G,)
is also Readable. Thus every flow chart in R,, is Readable.
The next section proves the main result of this article,
that every Readable flow chart is in R,. Hence, the
Readable flow charts can be obtained by using the three
structures in R together with hierarchical expansion, and
every flow chart so obtained is Readable. By Mills’
Theorem previously referenced, then, we also conclude
that every algorithm can be flow charted by a Readable
flow chart.

lll. The Main Theorem on Readability

The theorem below is proved by contradiction, but the
proof is actually a recursive procedure for hierarchically
expanding a Readable flow chart using the three struc-
tures in R: BLOCK, IFTHENELSE, and LOOPREPEAT.

THeOREM. R, is exactly the class of Readable flow charts.

Proor. That every flow chart in R,, is Readable has already
been noted in the previous section. The hard part is to
prove that every Readable flow chart can be obtained
from hierarchical expansion of the three structures in R.

If not, let G be an alleged counterexample with the
smallest number of nodes among the counterexamples,
that is, among the Readable flow charts not in R.. Note
that G has no function nodes, for they could be removed
to yield another counterexample. We will show that G
has no looping decisions. Let p be such a looping decision,
with external input C as in Fig, 3.

Let =, denote the set of paths from C to p, and =, the
set from p to C. Can there be a path A from a node r
on a path in =, to a node D on a path in #,? No, because
all paths from p starting with the looping link of p go
through C, by the definition of Forced Loop Closure for
the loop started by p.

Can there be a path p from a node s on a path in =,
to a node E on a path in «,? The answer is again No, but
_ for a slightly more complicated reason. This time, look
at the loop started by s, which must satisfy Forced Loop
Closure. The node C is still an external input node, but
sois E because of the path C—s—p—E. This situation is
of course ruled out, so u does not exist either.

198

Then Fig. 3 can be thought of as Fig. 4, where there
are no paths between the nodes in A and in B (which
each might be empty sets), and where there are no
entries or exits from A and B other than the ones shown.
That is, the original G is a hierarchical expansion (includ-
ing possibly node removal) of a graph G, which has a
function node in place of the structure of Fig. 4. Figure 4
itself is a hierarchical expansion of IFTHENELSE, the
two graphs corresponding to A and B being the graphs
replacing the FUNCTION nodes of LOOPREPEAT.
These two graphs are also Readable, however, and have
fewer nodes; hence they are in R, (or are null). The
graph G, as we have observed can be obtained from a
Graph G, by hierarchically expanding at a function node
by IFTHENELSE. But G, has fewer nodes than G,,
hence fewer nodes than G, and so is in R,. So G itself
would be in R,. This proves that G has no looping
decision nodes.

So G has only nonlooping decisions. Let p be such a
node, with merger node M. An external input is a node
C on a path from p to M that can be reached from
START without going through p, or, if it cannot be
reached from START without going through p, then such
paths must go through M before reaching C. If we knew
that there were no external inputs, we would be done as
in the LOOPREPEAT case, for Unique Merger plus the
lack of external inputs would cause the nonlooping
decision to look like Fig. 5. The same hierarchical ex-
pansion idea would work.

First note that if C were an external input, there is
no path from M to C not going through p. For it must
be possible to reach END from M, and it must therefore
be possible to reach END from M without going through
C. Let r be a node at which a path to END first leaves
the path from M to C. This r is, of course, a decision
node, but it is looping because of the path r>C—>M-sr.
Since G has no looping decision nodes, there is no path
from M to C not going through p.

Thus, if C exists at all, the situation of Fig. 6 must
prevail: there is a path from START to C not going
through p.

There is of course a path to p from START also. There
are two possibilities: i) there is a path from START to p
not going through C; ii) every path from START to p
goes through C.

In case i), there is a last node s where the paths from
START to C and to p agree, as in Fig. 7. However, s

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-26

violates Unique Merger, since paths starting with both
links out of s meet for the first time at C and also at M.
So we are in case ii), in which every path from START
to p goes through C, as in Fig. 8. In this case, there is a
path from M to p, for there is no way of leaving the path
from C to M without going through M, by Unique
Merger. Then p is a looping decision, already ruled out.
This proves the theorem.

IV. Reversing a Flow Chart

This section proves an amusing corollary to the theorem
of Section III. Some people read flow charts backward
in trying to understand them, so define the reversal of
a flow chart as the flow chart with the same nodes
but arrowheads reversed. Then FUNCTION nodes
remain FUNCTION nodes, DECISION nodes become
COLLECTOR nodes, COLLECTOR nodes become
DECISION nodes, and START and END are inter-
changed. However, we still have a flow chart, as is easy
to see. If G is a flow chart, let G® denote its reverse.
Note the commutativity of reversing and hierarchical
expansion:

H(G! F; G = H® (G, F; Gy)

Likewise, note the commutativity of reversing and com-
pletion:

(A%)e = (Aw)"

We then have the following Corollary to the theorem of
Section 111.

CoroLLary. The reverse of a readable flow chart is a
readable flow chart.

Proor. By the theorem, if G is readable, G is in R, where
R consists of BLOCK, IFTHENELSE, and LOOPRE-
PEAT. Hence G* is in (R%),. But the reverse of BLOCK
is BLOCK, of IFTHENELSE is IFTHENELSE, and of
LOOPREPEAT is LOOPREPEAT. So R® = R, and G#
is in R. By the theorem again, G* is readable, as required.

V. Readability of Code

We have seen that if one adopts the flow chart read-
ability requirement, the only permitted structures
automaticelly become BLOCK, IFTHENELSE, and
LOOPREPEAT. Therefore, those are all we would ever
propose to even consider permitting as a DSN standard
set of structures. It may however be preferable to not
allow the full force of LOOPREPEAT but only permit
DOWHILE and DOUNTIL, for reasons of code read-
ability. The reason would be that the code for LOOP-
REPEAT is less readable.

The reason is that the EXIT from the loop of Fig. 9
occurs in the middle of the code, looking like Fig. 10.
On the other hand, DOWHILE and DOUNTIL have
their EXITS at the end of their code, as is proper for
top-down readability (Fig. 11). But the exact form of the
code and the tradeoffs involved seem rather language
dependent, and the problem of whether to universally
ban LOOPREPEAT for DSN software implementations
is still under investigation.

Acknowledgment

The author is indebted to R. C. Tausworthe of the DSN Data Systems Develop-
ment Section and M. D. Donner for valuable comments.

Reference

1. Mills, H. D., Mathematical Foundations for Structural Programming, 1BM
Federal Systems Div., Rockville, Md., February 1972.

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-26

199

[B [}
OLD NEW

Fig. 1. Removing a FUNCTION node

L
BLOCK IFTHENELSE LOOPREPEAT

Fig. 2. The three structures of R

y {}g

Fig. 4. Howto
view Fig. 3

lu
Fig. 5. A nonlooping
decision

 g-——m- F

c
START
A
2 r
13
¢ m
p

Fig. 3. Alooping de-
cision node in G

200

Fig. 6. The external input

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-26

START
™
c
s
¥4
F 6
c
M
! ,
Fig. 7. The first case
Fig.9. LOOPREPEAT
START LOOP COLLECTOR NODE
L J
PERFORM £
EXIT LOOP IFp
PERFORM G (code for G ends with RETURN to COLLECTOR node.)
14 Fig. 10. Code for LOOPREPEAT
c
M LOOP COLLECTOR NODE : LOOP COLLECTOR NODE
PERFORM F | PERFORM G UNLESS p
RETURN TO COLLECTOR NODE ! (Code for G ends with RETURN
UNLESS p | to COLLECTOR node)
EXIT LOOP ' EXIT LOOP
I
{ DOWHILE | DOUNTIL
END
Fig. 8. The second case Fig. 11. Code for DOWHILE and DOUNTIL

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-26 201

